
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

Double Reverse Geometry Ortho-K lens

- B.C. Flatter than K. for 3~5 D
- Fitting Curve : 8~12 D steeper \qquad
- Alignment Curve $3 \sim 5$ D steeper
- Bulls eye F.S. pattern
- 1~2 Pairs for -5.00 D

\qquad
\qquad
\qquad
\qquad

Basic 4-Curve OK Lens

- Optical zone (BC, Base curve)

Central Push or Positive force

- Fitting zone (FC, Fitting curve)

Connecting OZ \& AZ
Pull or Negative force
Space for tear \& tissue redistribution
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic 4-Curve OK Lens

- Alignment zone (AC, Alignment curve)

Peripheral Push force
Adhesive force for centration

- Peripheral zone (PC, peripheral curve)

Form edge lift
Tear pumping
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Optical zone \& Base curve

- K-code \rightarrow define LSD or lens tightness
- Power-code \rightarrow define Target Power
- Over target \rightarrow Ensure sufficient reduction
- $-0.25 \sim-1.00$: = Target power
- -1.25 ~ $-5.00:+1.25$
- $-5.25:+1.75$
- $\geq-5.50:+2.00$
- Hyperopia: -0.75
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Optical zone \& Base curve

- Determine B.C. by
- BOZR (D) = K-code - (Target power + Over target)
- Vertex Target power
- Available from B.C. table
- Compensate Over target in front (Lens power)
- eg. $/$ K-code $=44.0 /$ Power-code $=-3.00$
- B.C. $=44$ - Vertex $(3.00)-1.25=39.85 \mathrm{D}(8.47 \mathrm{~mm})$
- Lens power $=+1.25$
- Optical zone: $5.2 \sim 6.0 \mathrm{~mm}$

Fitting Sagittal Depth (SD)

- Corneal contour reconstruction (KSD)

KSD : R \& eccentricity

- Determine lens sagittal depth (LSD)

$$
\text { LSD }=\text { KSD }+ \text { Tear allowance }
$$

E-value \& R_{0} for $K S D$

$\mathrm{R}_{0} \mathrm{e}$	$\mathrm{e}=0.4$	$\mathrm{e}=0.5$	(per 0.1 e-value)
43.00	1.727	1.691	0.036 mm
43.25	1.740	1.703	0.037 mm
43.50	1.751	1.713	0.038 mm
43.75	1.765	1.726	0.039 mm
44.00	1.776	1.736	0.040 mm
44.25	1.787	1.747	0.040 mm
per 0.25 D	0.012 mm	0.011 mm	Tolerable if <0.01

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reformulate Munnerlyn's formula

\qquad

- Tung's formula: \qquad
- Epithelial thinning $=\left(\mathrm{RD}^{2} / 3\right) *(1 / 2)=\mathrm{RD}^{2} / 6$

Target power	Munnerlyn's	Tung' s
3 D	4.5 mm	6.3 mm
4 D	3.9 mm	5.5 mm
6 D	3.2 mm	4.5 mm
8 D	2.1 mm	3.9 mm
10 D	2.4 mm	3.5 mm
12 D	2.2 mm	3.2 mm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Steepen periphery to flatten center Relative curvature

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Relative curvatures in toric molding \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Relative curvatures in hyperopia molding \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Central Island

Cause:

Alignment curve too tight
Excessive uncorrected astigmatism resulting in unequal forces on the cornea
Solution:
Decrease sagittal depth of lens by flattening alignment curve

- move up the column

Decentered lens must be centered
Flatten the BC if caused by uncorrected astigmatism move one column right.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

